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Abstract

The dynamic stability of a simply supported beam with additional discrete elements was investigated in the paper. Those

elements were an elastic spring, a concentrated mass and an undamped harmonic oscillator connected to the beam. All the

discrete elements could be mounted at any chosen position along the beam length. The beam was axially loaded by a

harmonic force. The problem of dynamic stability was solved by applying the mode summation method. The obtained

Mathieu equation allowed the influence of additional elements on the position of solutions on a stability chart to be

analysed. The analysis relied on testing the influence of individual discrete elements on the value of coefficient b in the

Mathieu equation. The research carried out showed that both the concentrated mass and oscillator mass had a

destabilising effect (maximum in the middle position) on the investigated system. The rigidity of the support and the

oscillator had an influence on an increase in the stability of the investigated system. An increase in the loading force,

independently of the relation between the mass and rigidity of discrete elements, had an influence on the increase in

coefficient b in the Mathieu equation (the less stable system). The considered beam is treated as a Bernoulli–Euler beam in

accordance with the small bending theory.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There is a number of works dealing with the dynamic stability of beams and columns (compare
Refs. [1–11]). These works deal both with the dynamic stability of beams or columns without additional
discrete elements as well as with additional discrete elements applied at the end of the beam or column.
Evensen and Evan-Iwanowski [1] carried out analytical and experimental research on the influence of a mass
mounted at the end of a beam on the dynamic stability of this beam. Sato et al. [2] investigated the parametric
vibrations of a horizontal beam loaded by a concentrated mass, which showed the influence of the
beam weight and the inertia of a rotational mass on the beam vibrations. In Ref. [3] Ahmadi and
Glockner determined criteria for the dynamic stability of a beam by assuming different types of changing load.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Gürgöze [4] analysed the influence of a mass mounted at the end of an elastically supported beam along its
axis. The dynamic stability of an elastic beam was analysed by Cederbaum and Mond [5]. Krawczuk and
Ostachowicz [6] presented a mathematical model of parametrical vibrations of a beam with a closed gap.
A few new types of parametric resonance have been found. Majorana and Pellegrino [7] analysed the dynamic
stability of an elastically supported beam (rotation and translation springs at the ends). Beam vibrations were
forced by the movements of the beam’s second end. Sochacki and Tomski [8] solved the problem of parametric
vibrations of a beam loaded by a follower force directed towards the positive pole. The same authors [9]
considered the dynamic stability of divergence pseudo-flutter columns. Chen and Yen [10] analysed the
instability of a column under oscillatory movement of a concentrated mass along the column axis. The same
authors [11] considered analytically and experimentally the dynamic stability of an electromagnetically excited
beam.

This paper takes into account a simply supported beam loaded by a longitudinal force in the form
P(t) ¼ P0+S cos nt. Additionally, the beam is elastically supported and loaded by a concentrated mass in a
chosen position along the beam length. An undamped harmonic oscillator was connected to the beam at a
chosen position between the supports. The considered beam is treated as a Bernoulli–Euler beam and solved
according to the small bending theory. The dynamic of the system was described with the use of the Mathieu
equation. The problem of dynamic stability was solved using the mode summation method. The influence of
additional mass and elasticity as well as an undamped harmonic oscillator on the position of solutions on the
stability chart was investigated. The influence of additional elements mounted to the beam taking into account
their values and positions on the value of coefficient b in the Mathieu equation was also investigated. In this
way the possibility of a loss in dynamic stability by the investigated system was determined.

2. Mathematical model of beam vibrations

A scheme of the considered beam is presented in Fig. 1.
The vibration equation for two parts of a beam loaded by a force is known and has the following form:

EiJi

qw4
i ðxi; tÞ

qx4
i

þ PðtÞ
qw2

i ðxi; tÞ

qx2
i

þ riAi

q2wiðxi; tÞ

qt2
¼ 0, (1a,b)

where P(t) ¼ P0+S cos nt, n is the forcing frequency, EiJi the flexural rigidity of beam, ri the density, Ai the
cross-section area and i ¼ 1,2 ith part of the beam

Eq. (1) is accompanied by the following boundary and matching conditions:

w1ð0; tÞ ¼ 0; w2ðl2; tÞ ¼ 0, (2a,b)

wII
1 ð0; tÞ ¼ 0; wII

2 ðl2; tÞ ¼ 0, (2c,d)

E1J1w
III
1 ðl1; tÞ þ PðtÞwI

1ðl1; tÞ � k1w1ðl1; tÞ �m1 €w1ðl1; tÞ �m2 €z� E2J2w
III
2 ð0; tÞ � PðtÞwI

2ð0; tÞ ¼ 0, (2e)
z

w1 (x 1 ,t)

x1

l1
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Fig. 1. Model of the beam with additional discrete elements (k1, m1, oscillator k2, m2) mounted in selected positions along the beam length.
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w1ðl1; tÞ ¼ w2ð0; tÞ, (2f)

wI
1ðl1; tÞ ¼ wI

2ð0; tÞ, (2g)

E1J1w
II
1 ðl1; tÞ ¼ E2J2w

II
2 ð0; tÞ, (2h)

m2 €zþ k2ðz� w1ðl1; tÞÞ ¼ 0, (2i)

in which the Roman numerals denote differentiation with respect to xi, and dots denote differentiation with
respect to time t.

During the vibrations the displacement of the beam and oscillator mass take the form:

wiðxi; tÞ ¼W iðxiÞ cosðotÞ ði ¼ 1; 2Þ (3)

and

z ¼ Z cosðotÞ, (4)

where Wi(xi) and Z are displacement amplitudes wi and z, while o is the natural frequency of the beam with
discrete elements.

Substituting Eqs. (3) and (4) into Eq. (1a,b) and into conditions (2a–i) one can obtain (for S ¼ 0):

EiJiW
IV
i ðxiÞ þ P0W

II
i ðxiÞ � riAio2W iðxiÞ ¼ 0 ði ¼ 1; 2Þ (5a,b)

and

W 1ð0Þ ¼ 0; W 2ðl2Þ ¼ 0, (6a,b)

W II
1 ð0Þ ¼ 0; W II

2 ðl2Þ ¼ 0, (6c,d)

E1J1W
III
1 ðl1Þ � k1W 1ðl1Þ þm1o2W 1ðl1Þ þm2o2Z � E2J2W III

2 ð0Þ ¼ 0, (6e)

W 1ðl1Þ ¼W 2ð0Þ, (6f)

W I
1ðl1Þ ¼W I

2ð0Þ, (6g)

E1J1W II
1 ðl1Þ ¼ E2J2W

II
2 ð0Þ, (6h)

k2ðZ �W 1ðl1ÞÞ �m2o2Z ¼ 0. (6i)

The general solution to Eqs. (5a,b) takes the form:

W iðxiÞ ¼ Ci1 sinhðaixiÞ þ Ci2 coshðaixiÞ þ Ci3 sinðbixiÞ þ Ci4 cosðbixiÞ, (7a,b)

where Cik are integration constants (k ¼ 1, 2, 3, 4) and:

a2i ¼ �
li

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2i
4
þ Oi

s
; b2i ¼

li

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2i
4
þ Oi

s
, (8a,b)

where

O2
i ¼ o2 riAi

EiJi

; li ¼
P0

EiJi

.

The equations of vibrations (5a,b) together with the boundary and matching conditions (6a–i) are used
in the formulation of the boundary value problem of the investigated beam. The natural frequency o,
amplitude Z and eigenfunctions of the beam Wi(xi) are determined by solving the boundary value problem
(see Appendix A).
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3. The solution to the problem of the dynamic stability of the beam

Using the method of assumed modes [12], the transverse deflection of the beam (in Eq. (1a,b)) can be
expressed as

wiðxi; tÞ ¼
X1
n¼1

W inðxiÞTnðtÞ ði ¼ 1; 2Þ, (9a,b)

where Tn(t) is an unknown time function and Win(xi) is nth form of free vibrations of ith part of the beam
which satisfies

X2
i¼1

riAi

Z li

0

W imðxiÞW inðxiÞdxi þW 1mðl1ÞW 1nðl1Þðm1 þm2k�2Þ ¼
0 for man;

g2n for m ¼ n;

(
(10a)

where

k�2 ¼
k2
2

ðk2 �m2o2
mÞðk2 �m2o2

nÞ
; g2n ¼

X2
i¼1

riAi

Z li

0

W 2
inðxiÞdxi þW 2

1nðl1Þðm1 þm2k��2 Þ, (10b,c)

k��2 ¼
k2
2

ðk2 �m2o2
nÞ

2
. (10d)

The derivation of an orthogonality condition (10) is shown in Appendix B.
Substituting Eqs. (9a,b) into Eq. (1a,b) leads to

X1
n¼1

½EiJiW
IV
in ðxiÞTnðtÞ þ ðP0 þ S cos ntÞW II

inðxiÞTnðtÞ þ riAiW inðxiÞ €TnðtÞ� ¼ 0 ði ¼ 1; 2Þ. (11)

Multiplying Eq. (11) by mth eigenfunction one can obtain:

X1
n¼1

½EiJiW
IV
in ðxiÞW imðxiÞTnðtÞ þ P0W II

inðxiÞW imðxiÞTnðtÞ

þ S cos ntW II
inðxiÞW imðxiÞTnðtÞ þ riAiW inðxiÞW imðxiÞ €TnðtÞ� ¼ 0. (12)

From Eqs. (5a,b) for the nth eigenfunction Win(xi), after multiplying by Wim(xi), one can receive:

EiJiW
IV
in ðxiÞW imðxiÞ þ P0W

II
inðxiÞW imðxÞ ¼ riAio2

nW inðxiÞW imðxiÞ ði ¼ 1; 2Þ. (13)

Then Eq. (12) becomes

X1
n¼1

½riAio2
nW inðxÞW imðxÞTnðtÞ þ S cos ntW II

inðxiÞW imðxiÞTnðtÞ þ riAiW inðxiÞW imðxiÞ €TnðtÞ� ¼ 0. (14)

Research by Evensen and Evan-Iwanowski [1] shows that only the first term of sum in Eqs. (9a,b) is of
significance, so integrating to Eq. (14) gives the following form (for the first term):

T1ðtÞ o2
1riAi

Z li

0

W 2
i1ðxiÞdxi þ S cos nt

Z li

0

W II
i1ðxiÞW i1ðxiÞdxi

� �
þ €T1ðtÞriAi

Z li

0

W 2
i1ðxiÞdxi ¼ 0 ði ¼ 1; 2Þ.

(15)

Appropriate transformations of Eq. (15) lead to the form of Mathieu equations

€T1ðtÞ þ ða1 þ b1S cos ntÞT1ðtÞ ¼ 0, (16a)

where

a1 ¼ o2
1; b1 ¼

P2
i¼1

R li

0 W II
i1ðxiÞW i1ðxiÞdxiP2

i¼1riAi

R li

0 W 2
i1ðxiÞdxi

. (16b,c)
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Fig. 2. Stable and unstable regions of solutions for the Mathieu equation (Timoshenko and Gere [14]).
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Hence, the substitution of t in Eq. (16) by a new variable t according to the relation t ¼ nt leads to the
following form of the equation for the whole beam system (the subscript 1 is omitted):

€TðtÞ þ ðaþ b cos tÞTðtÞ ¼ 0, (17a)

where

a ¼
o2

1

n2
; b ¼ b1

S

n2
, (17b,c)

dots denote differentiation with respect to dimensionless time t.
The periodical solutions of the Mathieu equation (17) are known (compare Refs. [13–15]). These solutions

allow us to determine the stable and unstable regions of solutions as in Fig. 2.
As shown in Fig. 2, the numerical values of a and b each time decide the position of solution in the stable or

unstable region. It can be seen that the highest probability of obtaining a stable solution occurs for the smaller
value of coefficient b at determined value a. However, it must be remembered that in the case of the relation of
the forcing frequency towards the natural frequency (expressed by coefficient a) equal to a ¼ 0.25, or a ¼ 1,
the solutions of the equation will be placed decidedly more often in an unstable region. The influence of
additional discrete elements of the system on the value of coefficient b at the determined values of coefficient a

was determined in this paper.
4. The results of numerical computations and discussion

The results of the solution to the dynamic stability problem allows us to determine the values of coefficient b in
the Mathieu equation for changeable values of mass m1 mounted at a randomly selected position on the beam
and the changeable coefficient of support elasticity k1. The values of coefficient b for different values of mass m2

and elasticity coefficient k2 for different positions of the oscillator on the beam were similarly determined.
Calculations were carried out assuming the following dimensionless quantities:

K1 ¼
k1l

3
c

E1J1
; K2 ¼

k2l3c
E1J1

; M1 ¼
m1P2

i¼1riAili

,

M2 ¼
m2P2

i¼1riAili

; l ¼
l1

lc

; p ¼
P0

Pc

; s ¼
S

Pc

, (18)

where Pc is the critical load of the beam without additional discrete elements
To depict the influence of individual elements added to the beam on its dynamic stability, research was

conducted assuming: Case 1; K2 ¼ 0 and M2 ¼ 0 (Figs. 3–10) and Case 2; K1 ¼ 0 and M1 ¼ 0 (Figs. 11–17).
In Figs. 3–9 and 12–16 the results were obtained for p ¼ 0.05 and s ¼ 0.05.
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Fig. 3. Beam model with additional discrete elements (k1, m1) mounted at a chosen position on beam length.
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Fig. 4. Exemplary positions of solutions to the Mathieu equation (17) for chosen values K1 and M1, l ¼ 0.1: K1 ¼ 0, M1 ¼ 0 ,

K1 ¼ 0, M1 ¼ 1– – – –, K1 ¼ 100, M1 ¼ 0- - - - - -.
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Fig. 5. The influence of the mounted position of mass M1 on the beam and its values on the value of coefficient b for a ¼ 1,

K1 ¼ 0: M1 ¼ 0.2– – – –, M1 ¼ 0.6- - - - - -, M1 ¼ 1 .
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Case 1. (K2 ¼ 0 and M2 ¼ 0) Fig. 3.

The values of the elasticity coefficient of the spring K1 were each time assumed to be below the values
determined by the curve of change in shape of the first form of system vibrations (‘‘boundary’’ values of K1)
for the chosen mounting position of the spring to the beam (Fig. 8). The curve of ‘‘boundary’’ values of K1

near mounting places (l ¼ 0 and 1) approach infinity.
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Fig. 6. The influence of the position of a spring with elasticity coefficient K1 mounted on the beam on the value of coefficient b for a ¼ 1,

M1 ¼ 0: K1 ¼ 10- - - - - -, K1 ¼ 100– – – –, K1 ¼ 500 .
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Fig. 7. The influence of the value of the elasticity coefficient of the spring K1 on the value of coefficient b for chosen values of coefficient a

and M1 ¼ 0, l ¼ 0.1: a ¼ 0.25 , a ¼ 1- - - - - -, a ¼ 4– – – –.
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Fig. 8. The boundary values of the elasticity coefficient of the spring K1 depending on the mounting position of the spring to the beam, at

which the change in shape of the first form of system vibrations of beam occurs: p ¼ 0.05, M1 ¼ 0.
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A violation of ‘‘boundary’’ values K1 results in a change in the system vibration from a non-nodal form into
a one-nodal form of vibration. The phenomenon of a change in the vibration form with an increase in the
elasticity coefficient of the beam support was studied in detail by Albarracı́n et al. [16]. The description
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Fig. 9. The dependence of the boundary values of the elasticity coefficient of spring K1 on the value of the static force loading the beam p,

at which point the change of the first form of beam vibrations takes position, M1 ¼ 0, l ¼ 0.5.
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Fig. 10. The influence of the value of the static force loading the beam p on the value of coefficient b at determined relations K1

and M1: K1 ¼ 0 and M1 ¼ 0 , K1 ¼ 0 and M1 ¼ 1– – – –, K1 ¼ 100 and M1 ¼ 0- - - - - -.
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Fig. 11. Model of the beam with oscillator (k2, m2) mounted at selected location on the beam length.
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concerned a beam elastically supported in the middle of a beam without a load. If the beam is statically loaded
by a force p, a change in the form of vibrations takes place at lower values of the elasticity coefficient of the
spring K1. The boundary values K1 for increasing values of the loaded force are shown in Fig. 9. The first form
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Fig. 12. Exemplary positions of solutions to the Mathieu equation (17) for chosen values K2 and M2, l ¼ 0.5: K2 ¼ 100 and

M2 ¼ 0.2- - - - - -, K2 ¼ 100 and M2 ¼ 1 , K2 ¼ 1000 and M2 ¼ 1– – – –.
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Fig. 13. The influence of oscillator mounting location on the beam and the value of the elasticity coefficient of oscillator K2 on the value of

coefficient b for a ¼ 1 and M2 ¼ 0.2: K2 ¼ 10– – – –, K2 ¼ 100- - - - - -, K2 ¼ 1000 .
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Fig. 14. The influence of the value of the oscillator mass M2 and its elasticity coefficient K2 on the value of coefficient b for a ¼ 1 and

l ¼ 0.5: K2 ¼ 10– – – –, K2 ¼ 100- - - - - -, K2 ¼ 100 .
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Fig. 15. The influence of the oscillator mounting location on the beam and its mass M2 on the value of coefficient b for a ¼ 1 and

K2 ¼ 100: M2 ¼ 1 , M2 ¼ 0.6- - - - - -, M2 ¼ 0.2– – – –.
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Fig. 16. The influence of the value of the elasticity coefficient of oscillator K2 and its mass M2 on the value of coefficient b for a ¼ 1,

l ¼ 0.5: M2 ¼ 1 , M2 ¼ 0.6- - - - - -, M2 ¼ 0.2– – – –.
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Fig. 17. The influence of the value of the static force loaded beam p on the value of coefficient b at determined relations K2 and M2 of the

oscillator: K2 ¼ 100 and M2 ¼ 0.2 , K2 ¼ 100 and M2 ¼ 1– – – –, K2 ¼ 1000 and M2 ¼ 1- - - - - -.
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of the vibrations of a beam elastically supported in the middle of its length before and after the violation of
boundary values K1 is also presented in this figure.

Analysis of the results presented in Figs. 4–10 leads to the conclusion that an increase in mass M1 has an
influence on the increase in coefficient b in the Mathieu equation (Figs. 4 and 5). The mounting position of the
mass on the beam has a significant influence on the value of coefficient b, and if the mass position is closer to
the midpoint of the beam, the value of coefficient b is higher (Fig. 5). The central position of mass M1 causes
even a threefold increase in coefficient b (case when mass M1 ¼ 1) in relation to the position of the mass near
supports.

According to the research results an increase in the values of the elasticity coefficient of the spring K1 lowers
coefficient b (Fig. 7). The central position of the spring results in the largest decrease in coefficient b, and this
decrease is higher at the higher value of the elasticity coefficient of the spring K1.

Coefficient b (Fig. 9) increases with an increase in static loaded force for selected relations between K1

and M1.

Case 2. (K1 ¼ 0 and M1 ¼ 0) Fig. 11.

Analysis of the research results of the influence of the oscillator (K2 and M2) and its placement on the
beam on the value of coefficient b in Eqs. (17) allows the following conclusions to be drawn: an increase
in oscillator mass M2 leads to an increase in the value of coefficient b, while an increase in the elasticity
coefficient K2 of the oscillator leads to a decrease in coefficient b (Figs. 14 and 16). Analysing the
influence of the oscillator placement on the beam (Figs. 12, 13 and 15) it can be stated that, independently
of the values K2 and M2, the closer oscillator mounting is to the centre of the beam the higher the
increase in b.

The coefficient b (Fig. 17) increases at chosen relations between K2 and M2 with an increase in the static
loaded force.
5. Conclusions

The results of the dynamic stability of a beam with additional discrete elements mounted in a chosen place
on its length are presented in this paper. The beam was loaded by a harmonically varying force. The value of
coefficient b in the Mathieu equation (17) was assumed as a measure of the possibility of loss in stability.

On the basis of the research results it can be stated that:
�
 an increase in the concentrated mass M1 mounted at a chosen position on its length leads to an increase in
possibility of a loss in stability of the investigated system (range of unstable solutions is growing);

�
 an increase in support elasticity (rigidity of spring K1 to the boundary values at determined load p) stabilises

the investigated system;

�
 the location of the concentrated element application influences the stability of the investigated system. In

the case of mass M1 a position in the centre of the beam is the most disadvantageous while support
elasticity K1 maximally stabilises the system in a central position;

�
 an increase in oscillator mass M2 makes the system more unstable;

�
 an increase in the elasticity of oscillator K2 stabilises the investigated system;

�
 the closer oscillator is mounted to the centre of the beam the more unstable the system is (independently on

the values K2 and M2); and

�
 an increase in the static force loading the system leads to instability in the system for selected relations

between K1 and M1 and K2 and M2.
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Appendix A

After substituting Eqs. (7a,b) into Eqs. (6a–i) one obtains the system of nine homogenous equations for the
unknown constants Cik and Z, what can be written in matrix form as

AðoÞC ¼ 0, (A.1)

where A(o) ¼ [apq], (p, q ¼ 1,2y9) and C ¼ [C11yC14, C21yC24, Z]T

For a non-trivial solution of Eq. (A.1), the determinant of the matrix A(o) is set equal to zero, yielding the
frequency equation:

det AðoÞ ¼ 0, (A.2)

where the non-zero elements apq of matrix A(o) are given as follows:

a11 ¼ 1; a13 ¼ 1,

a21 ¼ a21; a23 ¼ �b
2
1,

a31 ¼ a1 sinhða�1Þ; a23 ¼ a1 coshða�1Þ; a33 ¼ �a1 sinðb�1Þ; a34 ¼ a1 cosðb�1Þ; a36 ¼ �a2; a38 ¼ �b2,

a41 ¼ coshða�1Þ; a42 ¼ sinhða�1Þ; a43 ¼ cosðb�1Þ; a44 ¼ sinðb�1Þ; a45 ¼ �1; a47 ¼ �1,

a51 ¼ E�1a
2
1 coshða�1Þ; a52 ¼ E�1a

2
1 sinhða�1Þ a53 ¼ �E�1b

2
1 cosðb�1Þ; a54 ¼ �E�1b

2
1 sinðb�1Þ,

a55 ¼ �E�2a
2
2; a57 ¼ E�2b

2
2, (A.3)

a65 ¼ coshða�2Þ; a66 ¼ sinhða�2Þ; a67 ¼ cosðb�2Þ; a68 ¼ sinðb�2Þ,

a75 ¼ E�2a
2
2 coshða�2Þ; a76 ¼ E�2a

2
2 sinhða�2Þ; a77 ¼ �E�2b

2
2 cosðb�2Þ; a78 ¼ �E�2b

2
2 sinðb�2Þ,

a81 ¼ E�1a
3
1 sinhða�1Þ � ðk1 � o2m1Þ coshða�1Þ; a82 ¼ E�1a

3
1 coshða�1Þ � ðk1 � o2m1Þ sinhða�1Þ;

a83 ¼ E�1b
3
1 sinðb�1Þ � ðk1 � o2m1Þ cosðb

�
1Þ; a84 ¼ �E�1b

3
1 cosðb�1Þ � ðk1 � o2m1Þ sinðb

�
1Þ,

a86 ¼ �E�2a
3
2; a88 ¼ E�2b

3
2; a89 ¼ o2m2,

a91 ¼ �k2 coshða�1Þ; a92 ¼ �k2 sinhða�1Þ; a93 ¼ �k2 cosðb�1Þ; a94 ¼ �k2 sinðb�1Þ; a99 ¼ k2 � o2m2

and

a�i ¼ aili; b�1 ¼ bili; E�i ¼ EiJi; i ¼ 1; 2.

Appendix B

For the nth and mth eigenfunctions, Eqs. (5a,b) take the forms:

E�i W IV
in ðxiÞ þ P0W II

inðxiÞ � r�i o
2
nW inðxiÞ ¼ 0, (B.1)

E�i W IV
imðxiÞ þ P0W II

imðxiÞ � r�i o
2
mW imðxiÞ ¼ 0, (B.2)

where i ¼ 1,2, r*i ¼ riAi.
After multiplying Eq. (B.1) by Wim(xi) and Eq. (B.2) by Win(xi) one obtains

E�i W IV
in ðxiÞW imðxiÞ þ P0W

II
inðxiÞW imðxiÞ � r�i o

2
nW inðxiÞW imðxiÞ ¼ 0, (B.3)

E�i W IV
imðxiÞW inðxiÞ þ P0W

II
imðxiÞW inðxiÞ � r�i o

2
mW imðxiÞW inðxiÞ ¼ 0. (B.4)
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Integrating those equations along the length li, what gives

E�i

Z li

0

W IV
in ðxiÞW imðxiÞdxi þ P0

Z li

0

W II
inðxiÞW imðxiÞdxi � r�i o

2
n

Z li

0

W inðxiÞW imðxiÞdxi ¼ 0, (B.5)

E�i

Z li

0

W IV
imðxiÞW inðxiÞdxi þ P0

Z li

0

W II
imðxiÞW inðxiÞdxi � r�i o

2
m

Z li

0

W imðxiÞW inðxiÞdxi ¼ 0, (B.6)

and subtracting the obtained Eqs. (B.5) and (B.6) with consideration of the boundary conditions (6a–d) and
(6f–h), results in:

W 1mðl1Þ½E
�
1W 000

1nðl1Þ � E�2W 000
2nð0Þ� �W 1nðl1Þ½E

�
1W 000

1mðl1Þ � E�2W 000
2mð0Þ�

þ ðo2
m � o2

nÞ
X2
i¼1

r�i

Z li

0

W inðxiÞW imðxiÞdxi ¼ 0. (B.7)

Combining Eqs. (6e) and (6i) leads to

E�1W 000
1 ðl1ÞE

�
2W 000

2 ð0Þ ¼ m2
k2

m2o2 � k2
�m1

� �
o2 þ k1

� �
W 1ðl1Þ. (B.8)

Taking into account Eq. (B.8), Eq. (B.7) can be rewritten in the form:

W 1mðl1ÞW 1nðl1Þ m2
k2

m2o2
n � k2

�m1

� �
o2

n þ k1

� �
�W 1nðl1ÞW 1mðl1Þ m2

k2

m2o2
m � k2

�m1

� �
o2

m þ k1

� �

þ ðo2
m � o2

nÞ
X2
i¼1

r�i

Z li

0

W inðxiÞW imðxiÞdxi ¼ 0. (B.9)

After simplification Eq. (B.9) takes the form:

W 1mðl1ÞW 1nðl1Þ m1 þm2
k2

m2o2
m � k2

�
k2

m2o2
n � k2

� �� �
ðo2

m � o2
nÞ

þ ðo2
m � o2

nÞ
X2
i¼1

r�i

Z li

0

W inðxiÞW imðxiÞdxi ¼ 0. (B.10)

Because om6¼on for m 6¼n, the orthogonality condition can be finally expressed as follows:

X2
i¼1

r�i

Z li

0

W inðxiÞW imðxiÞdxi þW 1mðl1ÞW 1nðl1Þ m1 þm2
k2
2

ðk2 �m2o2
mÞðk2 �m2o2

nÞ

� �
¼

0 for man;

g2n for m ¼ n:

(

(B.11)
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